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Abstract. By a Euclidean logic, we understand a formal language whose
variables range over subsets of Euclidean space, of some fixed dimen-
sion, and whose non-logical primitives have fixed meanings as geometrical
properties, relations and operations involving those sets. In this paper,
we consider first-order Euclidean logics with primitives for the proper-
ties of connectedness and convexity, the binary relation of contact and
the ternary relation of being closer-than. We investigate the computa-
tional properties of the corresponding first-order theories when variables
are taken to range over various collections of subsets of 1-, 2- and 3-
dimensional space. We show that the theories based on Euclidean spaces
of dimension greater than 1 can all encode either first- or second-order
arithmetic, and hence are undecidable. We show that, for logics able to
express the closer-than relation, the theories of structures based on 1-
dimensional Euclidean space have the same complexities as their higher-
dimensional counterparts. By contrast, in the absence of the closer-than
predicate, all of the theories based on 1-dimensional Euclidean space
considered here are decidable, but non-elementary.

1 Introduction

By a Euclidean logic, we understand a formal language whose variables range
over subsets of Rn for some fixed n, and whose non-logical primitives have fixed
meanings as geometrical properties, relations and operations. The motivation for
studying such languages comes primarily from the field of Artificial Intelligence—
the idea being that an agent’s qualitative knowledge of the space it inhabits can
be understood as its access to the validities of such a logic.

Euclidean logics trace their ancestry back to the region-based spatial theories
developed by Whitehead [23] and de Laguna [14], later taken up within AI by
Randall, Cui and Cohn [19], Egenhoffer [7] and others. The fundamental idea
behind such logics is that the the natural domain of quantification for theories
representing an agent’s spatial knowledge is the collection of regions potentially
occupied by physical objects, rather than the set of points constituting the space
in question. Conformably, the non-logical primitives should take such regions,
not points, as their relata. Whitehead, for instance, built his logic on a single
spatial primitive which he referred to as extensive connection, where, intuitively,
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two regions stand in this relation if they either overlap or touch at their bound-
aries. Latterly, such logics have been subject to a more rigorous, model-theoretic
reconstruction, in which the spatial regions in question are identified with cer-
tain subsets of some standard model of the space under investigation, and the
primitive non-logical relations and operations interpreted accordingly. Thus, for
example, it is now customary to reconstruct Whitehead’s relation of extensive
connection between regions simply as the set-theoretic relation of having a non-
empty intersection. We remark that this relation is nowadays generally referred
to as contact, to avoid confusion with the separate notion of connectedness en-
countered in topology.

One of the first issues to resolve in the context of these logics is which subsets
of the space in question their variables should range over. By far the most popular
choice in the literature is the collection of regular closed sets—that is, those sets
which are equal to the topological closures of their interiors. Taking variables to
range only over the regular closed sets provides a convenient way of finessing the
issue of whether spatial regions are open, closed or semi-open; at the same time,
since the regular closed sets of a topological space always form a Boolean algebra
under inclusion, such ‘regions’ can be combined in a natural way. The logics
obtained by interpreting Whitehead’s language over (dense subalgebras of) the
regular closed algebras of various classes of topological spaces were investigated
by Roeper [20], Düntsch and Winter [6] and Dimov and Vakarelov [4]. In each
case, the authors provided a complete axiomatization of the theory corresponding
to a particular class of topological spaces. We remark that some of these results
can be found in the earlier work of de Vries [3], which was motivated by purely
mathematical considerations.

However, the regular closed subsets of R2 or R3 still include many pathologi-
cal sets, and thus are arguably poor candidates to represent the regions of space
occupied by physical objects (Pratt-Hartmann [17] , Kontchakov et al. [11]). To
avoid such ‘abnormal’ regions, it has been proposed that Euclidean logics should
instead restrict themselves to collections of “tame” regular closed sets. Candi-
dates include: RCS(Rn)—the regular closed semi-algebraic sets; RCP (Rn)—the
regular closed semi-linear sets (polytopes); RCPA(Rn)—the algebraic polytopes
(i.e. polytopes whose vertices have algebraic coordinates); and RCPQ(Rn)—the
rational polytopes (i.e. polytopes whose vertices have rational coordinates). One
natural question that arises in this context is whether, for a fixed set of non-
logical primitives, such restrictions actually make a difference to the resulting
logics (see, e.g. Kontchakov et al. [12]).

Logics interpreted over Euclidean spaces may employ primitives representing
non-topological notions, of course. For example, Tarski [22] considers second-
order logic with variables ranging over subsets of R3 and predicates expressing
the parthood relation and the property of being spherical. More recently, there
has been some interest within AI in logics featuring a primitive expressing the
property of convexity (Davis [2]) and the ternary relation of being closer than
(Sheremet et al. [21]). Thus, given any combination of non-logical primitives
expressing contact, convexity and relative closeness, and any of the domains of
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quantification RCS(Rn), RCP (Rn), RCPA(Rn) and RCPQ(Rn), we obtain a
particular first-order theory. The aim of this paper is to establish the complexity
of these theories.

One of the earliest results of this kind was proved by Grzegorczyk [8]. Taking
LC to be the first-order language whose only non-logical primitive is the binary
predicate C, interpreted as the contact relation, Grzegorczyk showed that the
LC-theories of the regular closed sets of a large class of topological spaces can
encode first-order arithmetic, and thus are undecidable. In [5], Dornheim showed
that the LC-theory of RCP (R2) is r.e.-hard. In [2], Davis considered the Eu-
clidean logics Lcloser and Lconv with primitives expressing the relation of being
closer-than and the property of being convex, respectively. He showed that the
Lcloser-theories and the Lconv-theories of RCPQ(Rn) and RCPA(Rn) can en-
code first-order arithmetic, and that the Lcloser-theories and the Lconv-theories
of RCP (Rn), RCS(Rn) and RC(Rn) can encode second-order arithmetic.

In this paper, we provide a systematic overview of results of this kind, filling in
some of the gaps left by the literature. We show that, for n = 1, the LC-theories
of RC(Rn), RCS(Rn), RCP (Rn), RCPA(Rn) and RCPQ(Rn) are decidable but
not elementary. For n > 1, we show that, the corresponding LC-theories can
encode first-order arithmetic, and that the LC-theory of RC(Rn) can encode
second-order arithmetic. For n > 0, we establish upper complexity bounds for the
LC-theories, the Lcloser-theories and the Lconv-theories of RC(Rn), RCS(Rn),
RCP (Rn), RCPA(Rn) and RCPQ(Rn). These results are summarized in Table 1.

Signatures
〈C〉, 〈C,≤〉, 〈c,≤〉 〈conv,≤〉, 〈C, conv〉 〈closer〉

RC(R) Decidable, NONELEMENTARY ∆1
ω-complete

D RCS(R) ∆1
ω-complete

o RCP (R) Decidable, NONELEMENTARY ∆1
ω-complete

m RCPA(R) ∆0
ω-complete

a RCPQ(R) ∆0
ω-complete

i RC(Rn), n > 1 ∆1
ω-complete ∆1

ω-complete ∆1
ω-complete

n RCS(Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

s RCP (Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

RCPA(Rn), n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

RCPQ(Rn), n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

Table 1. A complexity map of the first-order region-based Euclidean spatial logics.

We obtain a surprising model-theoretic result from the established complexity
bounds. Pratt [16] observed that the Lconv-theories of RCP (R2) and RCPQ(R2)
are different. The observation is based on a simple geometrical figure allowing
the construction, in RCP (R2), of square roots of arbitrary lengths. Because all
real numbers constructable in this way are algebraic, one might be tempted to
think that the Lconv-theories of RCPA(R2) and RCP (R2) are the same. This,
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however, turns out to be false, because the two theories are shown to have
different complexities.

2 Preliminaries

For basic model theoretic definitions and results, we refer to [10] ([10, p. 212] for
the definition of interpretation). Let σ be a signature, M a σ-structure and
ψ(x1, . . . , xn) a σ-formula. We define ψ(M) := {〈a1, . . . , an〉 ∈ M | M |=
ψ[a1, . . . , an]}. Let σ and τ be signatures and A and B be two structures over
these signatures. An interpretation Γ of A in B consists of:

1. for each sort i in A, τ -formulas ψsi(x̄) and ψsi∼(x̄, ȳ);
2. for each unnested atomic σ-formula φ(xi11 , . . . , x

ik
k ), a τ -formula φΓ (x̄1, . . . , x̄k);

3. a surjective mapping f iΓ : ψsi(B)→ Ai for each sort i in A, where Ai is the
ith universe of A,

such that for each unnested atomic σ-formula φ(xi11 , . . . , x
ik
k ), j = 1, . . . , k and

every a
ij
j ∈ ψsj (B), B |= φΓ [ai11 , . . . , a

ik
k ] iff A |= φ[f i1Γ (ai11 ), . . . , f ikΓ (aikk )]. If

there exists an interpretation Γ of A in B such that φ 7→ φΓ is computable
in polynomial time, then the theory of A is polynomial-time many-one reducible
to the theory of B (see [10, pp. 214-215]). In this case we write A ≤pm B, and if
in addition B ≤pm A, we write A ≡pm B.

Let X = 〈X, τ〉 be a topological space with ·− and ·◦ the closure and interior
operations in X . A subset A of X is called regular closed in X , if it equals
the closure of its interior, i.e. A = A◦−. The set of all regular closed sets in
X is denoted by RC(X ). 〈RC(X ),+,−, ·, 0, 1,≤〉 is a Boolean algebra (see e.g.
[13, pp. 25-28]), where, for a, b ∈ RC(X ), a + b := a ∪ b, a · b := (a ∩ b)◦−,
−a := (X \a)− and a ≤ b iff a ⊆ b. A Boolean sub-algebra M of RC(X ) is called
a mereotopology over X iff the domain of M is a closed basis for X (see [17,
Definition 2.5]). A mereotopology over a Euclidean topological space is called a
Euclidean mereotopology. We refer to the elements of a mereotopology as regions.
The maximal connected subsets of A ⊆ X are called connected components of A.
A mereotopology M over X respects components iff the connected components
of every a ∈ M are also in M . M is finitely decomposable iff every a ∈ M has
only finitely many connected components.

In this paper, for a given Euclidean topological space, we consider different
Euclidean mereotopologies. Recall that a real number is algebraic if it is a root of
a non-zero polynomial in one variable with rational coefficients. The collection of
algebraic numbers is denoted by A. A subset of Rn, for n > 0, which can be ob-
tained by a Boolean combination of a finite number of polynomial equations and
inequalities is called a semi-algebraic set (see e.g. [1]). If the polynomial equa-
tions and inequalities are linear, then the semi-algebraic set is called semi-linear
or a polytope. A polytope whose polynomial equations and inequalities are with
algebraic coefficients is called an algebraic polytope. Similarly, a polytope whose
polynomial equations and inequalities are with rational coefficients is called a
rational polytope. For n > 0, we denote by RCS(Rn), RCP (Rn), RCPA(Rn) and
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RCPQ(Rn) the regular closed semi-algebraic sets, the regular closed polytopes,
the regular closed algebraic polytopes and the regular closed rational polytopes.
It is easy to see that RCS(Rn), RCP (Rn), RCPA(Rn) and RCPQ(Rn) are all
dense Boolean subalgebras of RC(Rn).

For a Euclidean mereotopology M we are interested in languages able to
express the property of being connected (denoted by c), the binary contact re-
lation (denoted by C), the property of being convex (denoted by conv) and the
ternary relation closer-than (denoted by closer). For n > 0, denote the Euclidean
distance between the points p, q ∈ Rn by d(p, q) and define:

c := {a ∈M | a is connected}; closer :=
{
〈a, b, c〉 ∈M3 |

C := {〈a, b〉 ∈M2 | a ∩ b 6= ∅}; glb({d(p, q) | p ∈ a, q ∈ b}) ≤
conv := {a ∈M | a is convex}; glb({d(p, q) | p ∈ a, q ∈ c})

}
.

The following lemma characterizes the relative complexity of these properties
and relations.

Lemma 1. Let n > 0 and M any of RC(Rn), RCS(Rn), RCP (Rn), RCPA(Rn)
and RCPQ(Rn). Then:

〈M,≤, C〉 ≡pm 〈M,C〉; 〈M,≤, closer〉 ≡pm 〈M, closer〉;
〈M,≤, c〉 ≡pm 〈M,C〉 ≤pm 〈M,≤, conv〉 ≤pm 〈M, closer〉.

Dimov and Vakarelov [4] showed that the relation ≤ is definable in terms of
the relation C; Davis [2] showed that the property conv is definable in terms
of the relation closer; and Pratt-Hartmann [16] showed that, if M is finitely
decomposable, the relation C is definable in terms of conv and ≤. It is not hard
to show that the other statements also hold.

As we see in the following lemma, the regions in every Euclidean mereotopol-
ogy M are determined by the rational points which they contain.

Lemma 2. For a, b, c ∈ RC(Rn),

1) a ≤ b iff a ∩Qn ⊆ b ∩Qn; a = b iff a ∩Qn = b ∩Qn;
2) closer(a, b, c) iff glb({d(p, q) | p ∈ a◦ ∩Qn, q ∈ b◦ ∩Qn}) ≤

glb({d(p, q) | p ∈ a◦ ∩Qn, q ∈ c◦ ∩Qn}).

The first-order arithmetic (FOA) and the second-order arithmetic (SOA) are
the first- and second-order languages of the signature υ = 〈≤,+, ·, 0, 1〉. The
arithmetical hierarchy ∆0

ω and the analytical hierarchy ∆1
ω comprise the sets of

natural numbers which are definable in 〈N, υ〉 using FOA and SOA, respectively
([9]). Let T be a theory. T is in ∆0

ω if it is many-one reducible to FOA of 〈N, υ〉;
T is ∆0

ω-hard if FOA of 〈N, υ〉 is many-one reducible to T ; and T is ∆0
ω-complete

if it is in ∆0
ω and it is ∆0

ω-hard. The same notions are defined for ∆1
ω.

It is a standard result that using FOA one can interpret 〈Z, υ〉 and 〈Q, υ〉
in 〈N, υ〉. The same can be shown for 〈A, υ〉. Consider the signature
τ = 〈≤,+, ·, 0, 1, π, [ ], N〉. Let the structures 〈Q, τ〉, 〈A, τ〉 and 〈R, τ〉 be such
that, N := N; and the predicate π(x) and the function x[y] are means of encoding
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finite sequences of numbers. I.e. if π(q) holds, q[0] is the length of the sequence
encoded by q and for every natural 1 ≤ n ≤ q[0], q[n] is the nth element of the
sequence encoded by q. It is not hard to see that:

Lemma 3.

1. The first-order theory of 〈N,+, ·〉 is ∆0
ω-complete. The first-order theory of

the two-sorted structure 〈N, ℘(N); +, ·,∈〉 is ∆1
ω-complete.

2. The first-order theories of 〈Q, τ〉 and 〈A, τ〉 are ∆0
ω-complete.

3. The first-order theory of 〈R, τ〉 is ∆1
ω-complete.

3 Decidable Theories

We now show that the structures 〈RC(R), σ〉, 〈RCS(R), σ〉, 〈RCP (R), σ〉,
〈RCPA(R), σ〉 and 〈RCPQ(R), σ〉, with σ being either 〈C〉 or 〈conv,≤〉, have
decidable theories which are not elementary. Note that a non-empty regular
closed set a ∈ RC(R) is convex iff it is connected. So WLOG we fix σ = 〈C〉.

We write A � B when A is an elementary substructure of B. We have that:

〈RCPQ(R), σ〉 ≺ 〈RCPA(R), σ〉 ≺ 〈RCP (R), σ〉 = 〈RCS(R), σ〉 ≤pm 〈RC(R), σ〉.

To se that the structure 〈RCP (R), σ〉 can be interpreted in 〈RC(R), σ〉, we
only need to provide a formula ψRCP (x) for which ψRCP (RC(R)) = RCP (R).
A regular closed set a is in RCP (R) exactly when it has finitely many fron-
tier points. In other words, a ∈ RCP (R) just in case the set of endpoints
of its connected components lie in a bounded interval, and have no accumu-
lation points. We identify a point in r ∈ R with the unbounded connected
a ∈ RC(R) whose single endpoint is r. Let the formula ψcc(x, y) define the
pairs 〈a, b〉 ∈ RC(R)2 for which a is a connected component of b; the for-
mula ψ⊥(x) define the regular closed sets encoding the points in R; and the
formula ψ�(x, y) define the pairs 〈a, b〉 ∈ RC(R)2 for which a represents a
real number which is in the interior of the connected b. Then the formula
ψEP (l, x) := ψ⊥(l) ∧ ∃y(ψcc(y, x) ∧C(y, l) ∧C(y,−l) ∧ (y ≤ l ∨ y ≤ −l)) defines
the pairs 〈a, b〉 ∈ RC(R)2 for which a represents an endpoint of b. The formula
ψIso(x) := ∀l

(
ψ⊥(l)→ ∃u

(
ψ�(l, u)∧∀t(ψEP (t, x)∧ψ�(t, u)→ l = t∨ l = −t)

))
is satisfied by those a ∈ RC(R) whose endpoints lack accumulation points. And
the formula ψBnd(x) := ∃u

(
c(u) ∧ ¬c(−u) ∧ ∀l(ψEP (l, x) → ψ�(l, u))

)
is sat-

isfied by those a ∈ RC(R) whose endpoints are bounded. Finally, the formula
ψRCP (x) := ψIso(x) ∧ ψBnd(x) is satisfied by those a ∈ RC(R) which are in
RCP (R). We have thus shown the following.

Lemma 4. 〈RCP (R), σ〉 ≤pm 〈RC(R), σ〉

We now show that 〈RCPQ(R), σ〉 ≺ 〈RCPA(R), σ〉 ≺ 〈RCP (R), σ〉. For a func-
tion f : A → B denote by f+ : ℘(A) → ℘(B) the function defined by f+(a) =
{f(x) | x ∈ a}. Let X = 〈X, τ〉 be a topological space. Two n-tuples ā and b̄
of subsets of X are similarly situated, denoted by ā ∼ b̄, iff there is a home-
omorphism f : X → X such that f+ : ā 7→ b̄. One can easily check that for
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every homeomorphism f : R → R, the function f+ is an automorphism for the
structure 〈RCP (R), C〉. For every F ⊆ R, denote by RCPF (R) the set of all
elements in RCP (R) with endpoints in F .

Lemma 5. Let F be a dense subset of R, b ∈ RCP (R) and ā be an n-tuple of
elements in RCPF (R). Then there is an a ∈ RCPF (R) such that āa ∼ āb.

Corollary 1. Let F be a dense subset of R, ψ(x, ȳ) be a 〈C〉-formula, ā ∈
RCPF (R)n and b ∈ RCP (R). Then RCP (R) |= ψ[b, ā] iff there exists a ∈
RCPF (R) such that RCP (R) |= ψ[a, ā].

Lemma 6. [Tarski-Vaught Test] Let A be a substructure of B. Then A ≺ B iff
for every formula φ(x, ȳ) and ā ∈ A, if there is b ∈ B such that B |= φ[b, ā] then
there is a ∈ A such that B |= φ[a, ā]. (See e.g. [10, Theorem 2.5.1, p. 55].)

Corollary 2. 〈RCPQ(R), C〉 ≺ 〈RCPA(R), C〉 ≺ 〈RCP (R), C〉.

3.1 Upper bounds

We now show that the first-order theory of 〈RC(R), C〉 is decidable. We provide
an interpretation of 〈RC(R), C〉 in the monadic second-order theory of 〈Q, <〉,
which Rabin showed decidable in [18]. In the monadic second-order theory of
〈Q, <〉, we may evidently define the constants ∅ and Q, the relation ⊆ and the
operations ∪ and ∩.

Denote by τR the set of open sets in R and by βR the set of open connected
sets in R. Let the mapping f : ℘(R) → ℘(Q) be defined by f(a) = a ∩ Q. We
identify every region a ∈ RC(R) with the set of rational points that it contains,
i.e. with f(a). By Lemma 2 f � RC(R) has an inverse. Note that a set A ⊆ Q is
an f -image of some a ∈ RC(R) iff A consists of exactly those q ∈ Q which are
dense in A (i.e. not isolated from A).

The formula ψi(X) := ∀x∀y(X(x) ∧ X(y) ∧ x < y → ∀z(x < z ∧ z <
y → X(z))) defines the f -images of intervals, and the formula ψo = ψi(X) ∧
∀x(X(x) → ∃y∃z(X(y) ∧ X(z) ∧ y < x ∧ x < z)) defines the f -images of open
intervals. The pairs 〈q, A〉 ∈ Q× ℘(Q) with q being isolated from A are defined
by ψiso(x,X) := ∃Y1(Y1(x) ∧ ψo(Y1) ∧ ∀Y2(ψo(Y2) ∧ Y2 ⊆ X → Y1 ∩ Y2 = ∅)).
As a result, the formula ψRC(X) := ∀x(X(x)↔ ¬ψiso(x,X)) defines the set of
f -images of regular closed sets in R (see Lemma 7).

To define the contact relation, we encode a real number r by the pair
〈L,R〉 ∈ ℘(Q)2, where L = {q ∈ Q | q ≤ r} and R = {q ∈ Q | q ≥ r}.
Clearly, a pair 〈L,R〉 ∈ ℘(Q)2 encodes a real number iff it satisfies the formula
ψR(L,R) := L ∪ R = Q ∧ L 6= ∅ ∧ R 6= ∅ ∧ ∀x∀y(L(x) ∧ R(y) → x ≤ y). The
formula ψ�(L,R,X) := ψR(L,R) ∧ ψo(X) ∧ L ∩ X 6= ∅ ∧ R ∩ X 6= ∅ defines
the tuples 〈A,B,D〉 ∈ ℘(Q)3, such that 〈A,B〉 represent a some r ∈ R and D
represents a connected open neighborhood of r. The tuples 〈A,B,D〉 ∈ ℘(Q)3

such that 〈A,B〉 represents some r ∈ R that is in the closure of D are defined
by the formula ψ∈(L,R,X) := ψR(L,R) ∧ ∀N(ψ�(L,R,N) → N ∩ X 6= ∅).
Finally, two regular closed sets are in contact iff their f -images satisfy the for-
mula ψC(X,Y ) := ∃L∃R(ψ∈(L,R,X) ∧ ψ∈(L,R, Y )).
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Lemma 7. For t, u ⊆ Q we have that:

(i) Q |= ψRC [t] iff there is some a ∈ RC(R), such that f(a) = t;
(ii) if Q |= ψRC [t] ∧ ψRC [u], then Q |= ψC [t, u] iff f−1(t)Cf−1(u).

Lemma 8. Γ is an interpretation of 〈RC(R), C〉 in the monadic second-order
theory of 〈Q, <〉, where Γ consists of:

1. ψRC(X) as a formula defining the domain;
2. the inverse function of f � RC(R);
3. ψC(X,Y ) as the formula defining the contact relation.

Theorem 1. [18] The monadic second-order theory of 〈Q, <〉 is decidable.

Corollary 3. For M ∈ {RC(R), RCS(R), RCP (R), RCPA(R), RCPQ(R)}, the
theories of 〈M,C〉 and 〈M, conv,≤〉 are decidable.

3.2 Lower bounds

We show that the theory of 〈RCP (R), σ〉 is not elementary by introducing a
polynomial reduction from the weak monadic second-order theory of one succes-
sor, denoted by WS1S, to the the theory of 〈RCP (R), σ〉. Denote by LMon

S1S the
monadic second-order language of the structure 〈N, S〉, where S = {〈n, n + 1〉 |
n ∈ N}. WS1S is shown to be non-elementary by Meyer [15].

For the rest of the section, we abbreviate M := RCP (R) and M := 〈M,σ〉.
For n ∈ N, we encode the initial segment {0, . . . , n} of N by the pairs of dis-
connected regions 〈a, b〉 ∈ M2 (later defined by the formula ψ`(x, y)) such that
the connected components of a + b are bounded, a is non-empty and all the
connected components of b are on the same side of a. A natural number k ≤ n
is represented by the (k + 1)st connected component of b closest to a. A set
A ⊆ {0, . . . , n} is represented by the sum (in M) of the representatives of its
members.

Let ψcc(x, y) define the pairs 〈a, b〉 ∈M2 such that a is a connected compo-
nent of b. The formula

ψord(x, y, z) := c(x) ∧ c(y) ∧ c(z) ∧ ¬C(y, x+ z) ∧ ∀t(c(t) ∧ x+ z ≤ t→ y ≤ t),

defines the tuples 〈a, b, c〉 ∈M3 of connected regions such that the endpoints of
b are between all of the endpoints of a and all of the endpoints of c. The formula
ψ⊆(x, y) := ∀x′(ψcc(x′, x) → ψcc(x

′, y)) defines the pairs 〈a, b〉 ∈ M2 such that
every connected component of a is a connected component of b. The formula

ψ`(x, y) := c(x) ∧ ¬c(−x) ∧ ¬C(x, y) ∧ ∀z(ψcc(z, y)→ ¬c(−z)) ∧
∀z∀t(ψcc(z, y) ∧ ψcc(t, y)→ ¬ψord(z, x, t))

defines the pairs 〈a, b〉 ∈ M2 encoding an initial segment of natural numbers.
The formula

ψ≤(x, y, z) := ψ`(x, y) ∧ ψ`(x, z) ∧ ψ⊆(y, z) ∧
∀c∀d(ψcc(c, y) ∧ ψcc(d, z) ∧ ψord(x, d, c)→ ψcc(d, y))
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defines the tuples 〈a, b, c〉 ∈ M3 such that 〈a, b〉 and 〈a, c〉 encode initial seg-
ments of N, say {0, . . . , n} and {0, . . . ,m}, with n ≤ m, and 〈a, b〉 and 〈a, c〉 are
compatible in the sense that every k ∈ {0, . . . , n} is represented by the same
region in M with respect to 〈a, b〉 and 〈a, c〉.

Let the pair 〈a, b〉 ∈ M2 encode an initial segment {0, . . . , n} of N. Let
c, d ∈ M represent numbers k, l ∈ {0, . . . , n} and e ∈ M represent a finite
A ⊆ {0, . . . , n} all with respect to 〈a, b〉. Then k ∈ A iff 〈c, e〉 satisfies the
formula ψ∈(x, y) := ψcc(x, y), and k + 1 = l iff 〈c, d, a, b〉 satisfies the formula

ψS(x, y;x0, x1) := ψcc(x, x1) ∧ ψcc(y, x1) ∧ ψord(x0, x, y) ∧ x 6= y ∧
∀z(ψcc(z, x1) ∧ ψord(x0, z, y) ∧ z 6= y → ψord(x0, z, x)).

For every φ ∈ LMon
S1S , denote by δ(φ) the quantifier depth of φ.

Definition 1. We now define a translation (·)Γ : LPMon
S1S → Lσ, where LPMon

S1S

is the set of all formulas in the language LMon
S1S that are in prenex normal form.

We use the special variables r, s0, . . . , sδ(φ).

(xn = xm)Γ := pn = pm; (Xn = Xm)Γ := qn = qm;

(S(xn, xm))Γ := ψS(pn, pm; r, s0); (xn ∈ Xm)Γ := ψ∈(pn, qm);

(¬ψ)Γ := ¬ψΓ ; (ψ′ ∧ ψ′′)Γ := ψ′Γ ∧ ψ′′Γ ;

(∃xnψ)Γ := ∃pn∃sδ(ψ)
(
ψ≤(r, sδ(ψ)+1, sδ(ψ)) ∧ ψcc(pn, sδ(ψ)) ∧ ψΓ

)
,

(∀xnψ)Γ := ∀pn∀sδ(ψ)
(
ψ≤(r, sδ(ψ)+1, sδ(ψ)) ∧ ψcc(pn, sδ(ψ))→ ψΓ

)
,

(∃Xnψ)Γ := ∃qn∃sδ(ψ)
(
ψ≤(r, sδ(ψ)+1, sδ(ψ)) ∧ ψ⊆(qn, sδ(ψ)) ∧ ψΓ

)
,

(∀Xnψ)Γ := ∀qn∀sδ(ψ)
(
ψ≤(r, sδ(ψ)+1, sδ(ψ)) ∧ ψ⊆(qn, sδ(ψ))→ ψΓ

)
.

Lemma 9. For every φ ∈ LPMon
S1S , N |= φ iff M |= ∀r∀sδ(φ)ψ`(r, sδ(φ))→ ψΓ .

Theorem 2. [15] WS1S is not elementary.

Corollary 4. The first-order theory of 〈RCP (R), C〉 is not elementary.

4 Undecidable Theories

In this section we establish upper and lower bounds on the complexities of some
undecidable region-based theories of space. In particular, we show that the the-
ory of 〈RC(Rn), σ〉 with n > 1 and σ any of 〈C〉, 〈conv,≤〉 and 〈closer〉 is ∆1

ω-
complete. Further, the theories of RCPA(Rn) and RCPQ(Rn), with the same
non-logical primitives, are all ∆0

ω-complete. Although we show that the theories
of 〈RCS(Rn), σ〉 and 〈RCP (Rn), σ〉 are ∆0

ω-hard, their precise complexity re-
mains open. In contrast to the decidable one-dimensional region-based theories of
space considered in Section 3, we shall show that the theories of 〈RC(R), closer〉,
〈RCS(R), closer〉 and 〈RCP (R), closer〉 are ∆1

ω-complete and that the theories
of 〈RCPA(R), closer〉 and 〈RCPQ(R), closer〉 are ∆0

ω-complete.
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4.1 Lower Bounds

Combining ideas from [2] and [8], we show that, for σ = 〈C, c,+, ·,−,≤〉 and
n > 1, the theory of every extension of 〈RCPQ(Rn), σ〉 is ∆0

ω-hard, and that the
theory of 〈RC(Rn), σ〉 is ∆1

ω-hard.
Fix an extension M = 〈M,σ〉 of 〈RCPQ(Rn), σ〉, for some n > 1. For every

a ∈M , denote by |a| the number of connected components of a. We interpret the
structure 〈N,+, ·〉 in M, by encoding any natural number k as a region a ∈ M
having k connected components, i.e. with |a| = k.

The first step is to provide a formula ψ∼(x, y) which is satisfied by the pairs
〈a, b〉 ∈ M having the same number of connected components. Let the formula
ψcc(x, y) define the pairs of regions 〈a, b〉 ∈M2, with a being a connected com-
ponent of b. For a, b ∈ M , we say that a is a shrinking of b if and only if every
connected component of a is contained in a connected component of b and every
connected component of b contains exactly one connected component of a. The
formula ψshrink(x, y) := x ≤ y ∧ ∀y′(ψcc(y′, y)→ ψcc(x · y′, x)) defines the pairs
of regions 〈a, b〉 ∈M2 such that a is a shrinking of b.

For a, b, c ∈M we say that c is a wrapping of a and b if and only if a+ b ≤ c
and every connected component of c contains one connected component of a and
b. The formula

ψd∼(x, y) := ∃z(x+ y ≤ z ∧ ∀z′(ψcc(z′, z)→ ψcc(x · z′, x) ∧ ψcc(y · z′, y))

defines the pairs of regions 〈a, b〉 ∈M2 for which there exists a wrapping c ∈M .

Lemma 10. Let a, b ∈ M . Then |a| = |b| if and only if there exist a′, b′, c ∈ M
such that a′ and b′ are shrinkings of a and b and c is a wrapping of a′ and b′.

So, the formula ψ∼(x, y) := ∃x′∃y′(ψshrink(x′, x) ∧ ψshrink(y′, y) ∧ ψd∼(x′, y′))
defines the pairs 〈a, b〉 ∈ M2 such that |a| = |b|. The formula ψS(x, y) :=
∃x′(ψcc(x′, x) ∧ ψ∼(x · −x′, y)) defines the pairs of regions 〈a, b〉 ∈ M2 with
|a| = |b|+ 1 (taking ℵ0 + 1 = ℵ0), and the formula ψfin(x) := ¬ψS(x, x) defines
the regions having finitely many components. Clearly,

Lemma 11. The function fΓ : ψfin(M) → N defined by fΓ (a) = |a| is surjec-
tive.

The following formulas define the arithmetical operations on numbers:

ψ+(x, y, z) := ∃x′∃y′(ψ∼(x, x′) ∧ ψ∼(y, y′) ∧ ¬C(x′, y′) ∧ x′ + y′ = z) and

ψ×(x, y, z) := ∃u∃v[ψshrink(u, z) ∧ u ≤ v ∧ ψ∼(v, y) ∧ ∀t(ψcc(t, v)→ ψ∼(t · u, x))].

Lemma 12. Γ is an interpretation of 〈N,+, ·〉 in M, where Γ consists of:

1. the σ-formulas ψfin(x) and ψ∼(x, y);
2. the σ-formulas ψ+(x, y, z) and ψ×(x, y, z);
3. the surjective map: fΓ .

Corollary 5. Let τ be any of 〈C〉, 〈conv,≤〉 and 〈closer〉, n > 1 and M be any
of RC(Rn), RCS(Rn), RCP (Rn), RCPA(Rn) and RCPQ(Rn). Then the theory
of 〈M, τ〉 is ∆0

ω-hard.
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We now show that when M = RC(Rn), 〈M,σ〉 can interpret 〈N, ℘(N); +, ·,∈〉.
We identify every set A ⊆ N with a pair of regions 〈a, b〉 ∈ M2 such that, for
every k ∈ N, k ∈ A if and only if there exists a connected component a′ of
a with |a′ · b| = k. The collection of pairs 〈a, b〉 ∈ M2 that represent a set of
natural numbers is thus defined by the formula ψset(x, y) := ∀x′(ψcc(x′, x) →
ψfin(x′ · y)). The formula ψ∈(z;x, y) := ∃x′(ψcc(x′, x) ∧ ψ∼(z, x′ · y)) likewise
defines a set of triples 〈a, b, c〉 ∈M3 such that, if a represents the natural number
k and 〈b, c〉 represents a set of natural numbers A, then k ∈ A.

Lemma 13. The function f ′Γ : ψset(M)→ ℘(N) is surjective, where f ′Γ (a, b) =
{|a′ · b| : a′ a connected component of a}.

Lemma 14. Let a, b, c ∈ M . If M |= ψfin[a] and M |= ψset[b, c] then M |=
ψ∈[a, b, c] iff fΓ (a) ∈ f ′Γ (b, c).

Lemma 15. Γ is an interpretation of 〈N, ℘(N); +, ·,∈〉 in M, where Γ consists
of:

1. the formulas ψfin(x), ψset(x, y), ψ∼(x, y) and ψset∼(x, y, x′, y′);
2. the formulas ψ+(x, y, z), ψ×(x, y, z) and ψ∈(x, y, z);
3. the surjective maps: fΓ , f

′
Γ .

Corollary 6. Let σ be any of 〈C〉, 〈covn,≤〉 and 〈closer〉 and n > 1. Then the
theory of 〈RC(Rn), σ〉 is ∆1

ω-hard.

Some of the theories from Corollary 5 and Corollary 6 are known to have
even higher computational complexities. In particular:

Lemma 16. [2] Let σ be any of 〈conv,≤〉 and 〈closer〉, and let n ≥ 1. Then

– 〈RC(R), closer〉, 〈RCS(R), closer〉 and 〈RCP (R), closer〉 are ∆1
ω-hard;

– 〈RCPA(R), closer〉 and 〈RCPQ(R), closer〉 are ∆0
ω-hard;

– 〈RCS(Rn), σ〉 and 〈RCP (Rn), σ〉 are ∆1
ω-hard

4.2 Upper Bounds

We now show that for n > 0 the theories of the structures 〈RCP (Rn), closer〉,
〈RCPA(Rn), closer〉 and 〈RCPQ(Rn), closer〉 are interpretable in the structures
〈R, τ〉, 〈A, τ〉 and 〈Q, τ〉, respectively, where τ = 〈≤,+, ·, 0, 1, π, [ ], N〉. In the
sequel, we take R to range over the fields R, A and Q, writing RCP (Rn) al-
ternatively as RCPR(Rn). We denote the structure 〈R, τ〉 by R. Note that the
regions in RCPR(Rn) are exactly the sums of finitely many products of finitely
many half-spaces whose boundaries are (n−1)-dimensional hyperplanes definable
by degree 1 polynomials in R[X1, . . . , Xn]. So, for every sequence of sequences
s = 〈〈a11, . . . , a1m1

〉, . . . , 〈am1, . . . , ammm
〉〉 of half-spaces in RCPR(Rn), there is

an unique region a ∈ RCPR(Rn) such that a =
∑m
i=1

∏mi

j=1 aij . And conversely,
every region a ∈ RCPR(Rn) is represented by some (in fact infinitely many)
sequences of that form. Thus, we may encode elements of RCPR(Rn) using se-
quences of sequences of half-spaces. Further, since each half-space is defined by
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a linear equation, we may encode it as the sequence of its coefficients, so that
elements of RCPR(Rn) may be encoded as sequences of sequences of sequences
of real numbers. Of course, we may represent points in Rn by the sequence of
real numbers in the obvious way. Let ψ•(x), ψPT (x), ψ∈PT (x, y) and ψ∈PT◦(x, y)
be τ -formulas such that: ψ•(x) defines those r ∈ R that encode points in Rn;
ψPT (x) defines those r ∈ R that encode regions in RCPR(Rn); ψ∈PT (x, y) de-
fines the pairs 〈r, s〉 ∈ R such that r encodes a point in the region encoded by
s; and ψ∈PT◦(x, y) defines the pairs 〈r, s〉 such that r encodes a point in Rn in
the interior of the region in RCPR(Rn) encoded by s.

By Lemma 2, we get that the τ -formula ψ≤(x, y) := ∀z(ψ•(z)∧ψ∈PT (z, x)→
ψ∈PT (z, y)) defines the part-of relation, and that the τ -formula ψcloser(x, y, z)
defines the relation closer-than, where:

ψcloser(x, y, z) := ∀p∀q
(
ψ∈PT◦(p, x) ∧ ψ∈PT◦(q, z)→ ∃r∃s

(
ψ∈PT◦(r, x) ∧

ψ∈PT◦(s, y) ∧
n∑
i=1

(r[i]− s[i])2 ≤
n∑
i=1

(p[i]− q[i])2
))
.

Lemma 17. For n > 0, Γ is an interpretation of 〈RCPR(Rn), closer〉 in R,
where Γ consists of:

1. the formulas ψPT (x) and ψPT∼(x, y) := ψ≤(x, y) ∧ ψ≤(y, x);
2. the formula ψcloser(x, y, z) corresponding to the closer relation;
3. the surjective map f : ψPT (R)→ RCPR(Rn) defined by:

f(a) =

a[0]∑
i=1

a[i][0]∏
j=1

{
〈x1, . . . , xn〉 ∈ Rn

∣∣ n∑
k=1

a[i][j][k] · xk + a[i][j][n+ 1] ≤ 0
}
.

Corollary 7. Let n > 0 and σ be any of the signatures 〈C〉, 〈conv,≤〉 and
〈closer〉. Then 〈RCPQ(Rn), σ〉 and 〈RCPA(Rn), σ〉 are in ∆0

ω and 〈RCP (Rn), σ〉
is in ∆1

ω.

Now, as we promised in the introduction, for n > 1 and σ = 〈conv,≤〉, we obtain
from the computational properties of 〈RCP (Rn), σ〉 and 〈RCPA(Rn), σ〉 a very
interesting and surprising model-theoretic result.

Corollary 8. The structure 〈RCPA(R), conv,≤〉 is not an elementary substruc-
ture of the structure 〈RCP (R), conv,≤〉.

We now show that the structures 〈RCS(Rn), closer〉, for n > 0 , are definable
in the structure R = 〈R, τ〉. Fix a positive n ∈ N. Recall that a subset of Rn
is semi-algebraic if it is definable by a Boolean combination of finite number of
polynomial equations and inequalities. Following essentially the same procedure
as for semi-linear sets, it is routine to encode semi-algebraic sets as real numbers.
All that then remains to do is to show that we can write a formula defining the
real numbers that encode semi-algebraic sets which are also regular closed.

Let the formula ψ•(x) define the real numbers encoding points in Rn; let the
formula ψSA(x) define the set of real numbers encoding semi-algebraic sets in
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Rn; and let the formula ψ∈SA(x, y) define the pair 〈r, s〉 ∈ R2 such that r encodes
a point in Rn which is in a semi-algebraic set encoded by s. We use n-balls to
determine if a semi-algebraic sets is regular closed. We identify each n-ball with
the n + 1 coefficients of its inequality. A real number encodes an n-ball iff it
satisfies the formula ψ©(x) := π(x)∧x[0] = n+1, and a point, encoded by some
p ∈ R, lies in the interior of an n-ball, encoded by some o ∈ R, iff the pair 〈p, o〉
satisfies the formula ψ∈©(x, y) :=

∑n
i=1(x[i]− y[i])2 < x[n+ 1].

A point, encoded by p ∈ R, is isolated from a semi-algebraic set, encoded by
o ∈ R, iff 〈p, o〉 satisfies the formula:

ψ�(x, y) := ∃z(ψ©(z) ∧ ψ∈©(x, z) ∧ ∀t(ψ•(t) ∧ ψ∈©(t, z)→ ¬ψ∈SA(t, y))).

A set A ⊆ Rn is regular closed iff it contains exactly the points that are
dense in it. So the formula ψRCS(x) := ψSA(x) ∧ ∀y(ψ∈©(y, x) ↔ ¬ψ�(y, x))
defines exactly the codes of the regular closed semi-algebraic sets. Two numbers
encode the same regular closed semi-algebraic sets if they satisfy the formula:
ψRCS∼(x, y) := ∀t(ψ•(t)→ (ψ∈SAS(t, x)↔ ψ∈SA(t, y))). One can easily write a
formula ψcloser(x, y, z) defining the relation closer-than.

Lemma 18. For n > 0, Γ is an interpretation of 〈RCS(Rn), closer〉 in R,
where Γ consists of:

1. the formulas ψRCS(x) and ψRCS∼(x, y);
2. the formula ψcloser(x, y, z);
3. the surjective map f : ψRCS(R)→ RCS(Rn) defined by:

f(a) = {〈k[1], . . . , k[n]〉 | R |= ψ•[k],R |= ψ•∈SAS [k, a]}.

Corollary 9. Let n > 0 and σ be any of the signatures 〈C〉, 〈conv,≤〉 and
〈closer〉. Then the theory of 〈RCS(Rn), σ〉 is in ∆1

ω.

We now show that, for n > 0, the structures 〈RC(Rn), closer〉 can be in-
terpreted in the second-order theory of Q = 〈Q, τ〉. We identify every region in
RC(Rn) with the set of rational points that it contains, and we make use of the
fact that a subset of Rn is regular closed iff it contains exactly the points that
are dense in it. A point p ∈ Rn is dense in A ⊆ Rn iff every open neighborhood
of p intersects A. Define fn : ℘(Rn)→ ℘(Qn) by fn(a) := a ∩Qn.

Let ψ•(x), ψ©(x) and ψ∈©(x, y) be as in the case of semi-algebraic sets. The
formula ψ�(x,X) := ∃z(ψ©(z) ∧ ψ∈©(x, z) ∧ ∀t(¬(ψ∈©(t, z) ∧ t ∈ X))) defines
the pairs 〈q, A〉 ∈ Q × ℘(Q) such that q encodes a point which is isolated from
the set of points encoded by the members of A.

A set A of rational points is an fn-image of a regular closed set iff it contains
exactly the rational points that are dense in it iff A satisfies

ψRC(X) := ∀x(x ∈ X → ψ•(x)) ∧ ∀x(x ∈ X ↔ ¬ψ�(x,X)).

One can easily find a formula ψcloser(X,Y, Z) defining the relation closer-than.
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Lemma 19. For n > 0, Γ is an interpretation of 〈RC(Rn), closer〉 in Q, where
Γ consists of:

1. the formulas ψRC(X) and ψRC∼(X,Y ) := ∀x(x ∈ X ↔ x ∈ Y );
2. the formula ψcloser(X,Y, Z) corresponding to the closer relation;
3. the inverse of fn as a surjective map.

Corollary 10. Let σ be any of 〈C〉, 〈conv,≤〉 and 〈closer〉. Then the theory of
〈RC(Rn), σ〉 is in ∆1

ω.

5 Conclusions

In this paper we examined the complexity of the first-order theories of some
region-based Euclidean spatial logics. We showed that the spatial logic for ex-
pressing the contact relation is decidable but not elementary, when interpreted
over R. We showed that the same logic interpreted over Rn, for n > 1, can encode
first-order arithmetic, and when regions with infinitely many components are al-
lowed, second-order arithmetic as well. These lower complexity bounds also hold
for more expressive logics such as those able to express the property of convexity
or the relation closer-than. It was shown in [2] that when polytopes with vertices
having transcendental coordinates are allowed, these logics have complexities no
less than that of second-order arithmetic. It also follows from [2] that, the com-
plexities of the spatial logics which are able to express the closer-than relation
are not influenced by the dimension of the space over which they are interpreted.

We showed that all structures with countable domains are definable in first-
order arithmetic and that all others are definable in second-order arithmetic.
This yields precise complexity bounds for all our structures but 〈RCS(Rn), C〉
and 〈RCP (Rn), C〉, where n > 1. For n = 2, the theories of these structures are
the same as the theory of 〈RCPQ(R2), C〉 (see [17]), which makes them complete
with respect to first-order arithmetic. However, for n > 2, the precise complexity
the theories of 〈RCS(Rn), C〉 and 〈RCP (Rn), C〉 remains open.

From the established complexity bounds we obtain an interesting and sur-
prising model-theoretic result — namely that 〈RCPA(R2), conv,≤〉 is not an
elementary substructure of 〈RCP (R2), conv,≤〉.
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